Determination of Phosphate-activated Glutaminase Activity and Its Kinetics in Mouse Tissues using Metabolic Mapping (Quantitative Enzyme Histochemistry)
نویسندگان
چکیده
Phosphate-activated glutaminase (PAG) converts glutamine to glutamate as part of the glutaminolysis pathway in mitochondria. Two genes, GLS1 and GLS2, which encode for kidney-type PAG and liver-type PAG, respectively, differ in their tissue-specific activities and kinetics. Tissue-specific PAG activity and its kinetics were determined by metabolic mapping using a tetrazolium salt and glutamate dehydrogenase as an auxiliary enzyme in the presence of various glutamine concentrations. In kidney and brain, PAG showed Michaelis-Menten kinetics with a K(m) of 0.6 mM glutamine and a V(max) of 1.1 µmol/mL/min when using 5 mM glutamine. PAG activity was high in the kidney cortex and inner medulla but low in the outer medulla, papillary tip, glomeruli and the lis of Henle. In brain tissue sections, PAG was active in the grey matter and inactive in myelin-rich regions. Liver PAG showed allosteric regulation with a K(m) of 11.6 mM glutamine and a V(max) of 0.5 µmol/mL/min when using 20 mM glutamine. The specificity of the method was shown after incubation of brain tissue sections with the PAG inhibitor 6-diazo-5-oxo-L-norleucine. PAG activity was decreased to 22% in the presence of 2 mM 6-diazo-5-oxo-L-norleucine. At low glutamine concentrations, PAG activity was higher in periportal regions, indicating a lower K(m) for periportal PAG. When compared with liver, kidney and brain, other tissues showed 3-fold to 6-fold less PAG activity. In conclusion, PAG is mainly active in mouse kidney, brain and liver, and shows different kinetics depending on which type of PAG is expressed.
منابع مشابه
Determination of Glutamate Dehydrogenase Activity and Its Kinetics in Mouse Tissues using Metabolic Mapping (Quantitative Enzyme Histochemistry)
Glutamate dehydrogenase (GDH) catalyses the reversible conversion of glutamate into α-ketoglutarate with the concomitant reduction of NAD(P)(+) to NAD(P)H or vice versa. GDH activity is subject to complex allosteric regulation including substrate inhibition. To determine GDH kinetics in situ, we assessed the effects of various glutamate concentrations in combination with either the coenzyme NAD...
متن کاملLocalization and Activity of Mouse Endometrial Alkaline Phosphatase after Hyperstimulation and Progesterone Injection at the Implantation Time
The activity of mouse endometrial alkaline phosphatase after hyperstimulation and progesterone injection at the implantation time Alkaline phosphatase (ALP) of endometrium may play a critical function in the development and implantation of embryo. The aim of this study was to determine the localization of endometrial ALP activity after hyperstimulation and progesterone injection. Thirty adult f...
متن کاملEvaluation of Alkaline Phosphatase Activity Alteration in Mouse Endometrium After Ovarian Hyperstimulation During Early, Pseudo and Natural Pregnancy Until Implantation Time
Purpose: The purpose of this study was to determine alkaline phosphatase (ALP) activity of uterus after ovarian induction using pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) in normal and pseudopregnancy during implantation periods. Materials and Methods: For this purpose, 240 female NMRI mice with the age of 6-10 weeks were selected and divided into control an...
متن کاملVARIATIONS OF GLUCOSE 6-PHOSPHATE DEHYDROGENASE ACTIVITY IN VARIOUS TISSUES INDUCED BY METABOLIC ALKALOSIS, ACIDOSIS AND DIABETES
The effects of chronic metabolic acidosis, alkalosis and alloxan-induced ketoacidosis on G6PD activity of rat kidney, liver and erythrocytes were studied. Metabolic acidosis significantly increased the activity of kidney enzyme (55%) but decreased the liver (43%) and erythrocyte (38%) enzyme activities. Alkalosis did not make a significant change in the kidney or liver enzyme activity but ...
متن کاملPhosphate-dependent glutaminase from rat kidney. Cause of increased activity in response to acidosis and identity with glutaminase from other tissues.
Immune serum was prepared against phosphate-dependent glutaminase purified from rat kidney and was used to investigate the cause of increased renal glutaminase activity in acidotic rats. Crude kidney homogenates from acidotic rats exhibited a fourfold greater specific activity for phosphate-dependent glutaminase. The glutaminase was solubilized initially by lyophilization of borate treated mito...
متن کامل